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Abstract 
 

Nondestructive laboratory seismic testing to characterize the complex modulus and 
Poisson’s ratio of asphalt concrete is presented in this thesis. These material properties 
are directly related to pavement quality and the dynamic Young’s modulus is used in 
thickness design of pavements. Existing standard laboratory methods to measure the 
complex modulus are expensive, time consuming, not truly nondestructive and cannot be 
directly linked to nondestructive field measurements. This link is important to enable 
future quality control and quality assurance of pavements based on the dynamic modulus. 
Therefore, there is a need for a more detailed and accurate laboratory test method that is 
faster, more economic and can increase the understanding and knowledge of the behavior 
of asphalt concrete. Furthermore, it should be able to be linked to nondestructive field 
measurements for improved quality control and quality assurance of pavements. 

Seismic testing can be performed by using ultrasonic measurements, where the speed of 
sound propagating through a material with known dimensions is measured. Seismic 
testing can also be used to measure the resonance frequencies of an object. Due to any 
excitation, a solid resonates when the frequency of the applied force matches the natural 
frequencies of the object. In this thesis, resonance frequency measurements have been 
performed at several different temperatures by applying a load impulse to a specimen 
while measuring its dynamic response. The measured resonance frequencies and the 
measured frequency response functions have been used to evaluate the complex modulus 
and Poisson’s ratio of asphalt concrete specimens. Master curves describing the complex 
modulus as a function of temperature and loading frequency have been determined 
through these measurements.  

The proposed seismic method includes measurements that are significantly faster, easier 
to perform, less expensive and more repeatable than the conventional test methods. 
However, the material properties are characterized at a higher frequency range compared 
to the standard laboratory methods, and for lower strain levels (~10-7) compared to the 
strain levels caused by the traffic in the pavement materials.  

Importantly, the laboratory seismic test method can be linked together with 
nondestructive field measurements of pavements due to that the material is subjected to 
approximately the same loading frequency and strain level in both the field and 
laboratory measurements. This allows for a future nondestructive quality control and 
quality assurance of new and old pavement constructions. 
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Sammanfattning 
 

I denna avhandling presenteras oförstörande seismisk laboratorieprovning för att 
bestämma asfaltprovkroppars komplexa styvhetsmodul och tvärkontraktionstal. Dessa 
materialegenskaper är direkt kopplade till beläggningars kvalitet och den dynamiska 
styvhetsmodulen används vid dimensionering av vägar. De traditionella 
laboratoriemetoderna för att bestämma den komplexa styvhetsmodulen är kostsamma, 
tidskrävande, inte helt oförstörande och kan inte jämföras med resultat från oförstörande 
fältmätningar. Länken mellan laboratorieprovning och fältmätningar är synnerligen 
viktigt för att möjligöra en modern kvalitetskontroll av asfaltbeläggningar baserad på den 
dynamiska styvhetsmodulen. Det finns därför ett stort behov av en noggrannare 
laboratoriemetod som är tids- och kostnadseffektiv samt kan bidra till en ökad förståelse 
och kunskap om asfalts egenskaper. Metoden ska även kunna kopplas till oförstörande 
fältmätningar för att kunna förbättra kvalitetskontrollerna av vägkonstruktioner. 

Seismisk provning kan utföras genom ultraljudsmätningar där hastigheten av vågor som 
propagerar genom ett material med kända dimensioner mäts upp. Mätning av ett objekts 
resonansfrekvenser är också ett exempel på seismisk provning. När en kropp utsätts för 
en extern kraft som motsvarar objektets egenfrekvenser uppstår resonans. I denna 
avhandling har resonansfrekvensmätningar utförts vid ett flertal olika temperaturer 
genom att excitera en asfaltprovkropp och mäta dess dynamiska respons. Uppmätta 
resonansfrekvenser och frekvensresponsfunktioner har använts för att utvärdera 
komplexa styvhetsmoduler och tvärkontraktionstal för asfaltprovkroppar. Masterkurvor 
som beskriver den komplexa styvhetsmodulen som funktion av temperatur och 
belastningsfrekvens har bestämts utifrån dessa mätningar. 

I jämförelse med de traditionella mätmetoderna kan mätningar av den komplex 
styvhetsmodulen utföras enklare, snabbare och mer kostnadseffektivt med den föreslagna 
seismiska laboratoriemetoden. Dessutom är seismiska mätmetoder betydligt mer 
repeterbara än de traditionella metoderna. Materialegenskaperna mäts dock vid högre 
belastningsfrekvenser och lägre töjningsnivåer (~10-7) än vad en trafikbelastad 
beläggning utsätts för i fält. 

Resultat från oförstörande seismiska fältmätningar kan direkt jämföras med resultat från 
den seismiska laboratoriemetoden tack vare att materialet utsätts för samma 
belastningsfrekvens och töjningsnivåer i dessa testmetoder. Detta möjliggör en framtida 
oförstörande kvalitetskontroll av nya och gamla vägkonstruktioner baserad på den 
dynamiska styvhetsmodulen. 
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1. Introduction 
 

The magnitude of the strain level at the bottom of asphalt concrete layers is currently 
used in thickness design of pavements in Sweden. At this date, the strains are estimated 
through an empirical approach by using tables of the stiffness of the material. These 
tables account for the type of asphalt mixture and climate conditions but are not specific 
for the actual materials used in the pavement construction (TRVK Väg 2011). Therefore, 
there is a great interest to use a more analytical approach of predicting the upcoming 
stresses and strains in the materials used in pavement constructions.  

Furthermore, today’s control of pavement quality is based on coring to investigate the air 
void content and thickness of the asphalt layer. The air void content in the cored 
specimens is used as a measure of the packing quality for new pavement constructions, 
since it may indicate if the correct stiffness has been achieved. However, there is no 
parameter investigated that could be directly related to the stiffness of the material. 
Quality control based on a direct relation to the stiffness would provide a better 
knowledge of the true behavior of the material. 

The dynamic Young’s modulus of asphalt concrete is one of the main inputs in thickness 
design of pavements. Due to the viscoelastic nature of asphalt concrete, a master curve is 
can be used to characterize the viscoelastic complex modulus over a range of 
temperatures and frequencies. The estimation of a master curve requires a nondestructive 
testing technique to be able to measure the complex modulus of a specimen at several 
different temperatures and loading frequencies. However, the existing standard 
laboratory test methods to measure the complex modulus are not truly nondestructive 
(Brown et al. 2009). This limitation affects the test procedure of the traditional methods 
in order to cause as little damage as possible to the tested specimens. For example, the 
test sequence starts at the lowest test temperature and highest frequency and goes 
towards higher temperatures and lower frequencies. The traditional methods are 
performed by applying a cyclic load to the specimen while measuring the deformation of 
the specimen. The methods require relatively heavy equipment to apply the load and 
sensitive strain-gauges to measure the deformation. Hence, expensive equipment is 
needed and it is often time-consuming to perform the necessary settings to measure the 
complex modulus. The traditional methods sensitivity to the test set-up may also reduce 
the repeatability and reproducibility of these tests. Still, it is of great interest to be able to 
construct asphalt concrete master curves, due to its ability to express the complex 
modulus over a wide range of temperatures and frequencies. Master curves can also 
provide a great support in the development of new improved asphalt mixtures. There is 
therefore a need for a simpler, faster and more accurate method that is truly 
nondestructive to determine the complex modulus master curve of asphalt concrete 
specimens. 
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Resonance frequencies of all free solids depend on the dimensions, mass and stiffness of 
the object. Therefore, it is possible to determine the stiffness of a material through 
measurements of the solids resonance frequencies, mass and dimensions. Measurements 
of resonance frequencies to extract material properties are widely used in other fields of 
engineering and are often referred to as resonant ultrasound spectroscopy (Migliori and 
Sarrao 1997) or resonant acoustic spectroscopy (Ostrovsky et al. 2001). Resonance 
testing has also been applied to asphalt concrete specimens in several studies (e. g. 
Whitmoyer and Kim 1994; Kweon and Kim 2006; Lacroix et al. 2009). However the 
results from these measurements have been based on a simplified approach of calculating 
the modulus of the specimens (ASTM C215 2008). This has limited the determination of 
the complex modulus to the fundamental resonance frequency for different modes of 
vibration at each testing temperature. It has therefore not been possible to construct 
master curves using only results obtained from the resonance frequency testing in these 
studies.  

This thesis presents the development of truly nondestructive testing techniques based on 
seismic measurements. The aim of this study has been to develop a nondestructive 
measurement technique to be able to determine the complex modulus master curve of 
asphalt concrete specimens.   
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2. Summary of papers 
 

The papers appended in this thesis present methods of evaluating seismic measurements 
to characterize the complex moduli of asphalt concrete specimens. Paper I presents the 
approach of resonant acoustic spectroscopy (RAS) and how it can be applied to 
viscoelastic materials. The presented complex moduli are calculated for the resonance 
frequencies of the specimens only. Paper II expands the usable frequency range by the 
use of frequency response functions (FRFs), where theoretical FRFs are optimized 
against measured FRFs. 

 

Paper I: Application of resonant acoustic spectroscopy to asphalt concrete beams 
for determination of the dynamic modulus 

The response of a specimen due to an impact is measured and used to determine the 
resonance frequencies of the specimens. The complex moduli are estimated through 
energy minimization techniques including the Rayleigh-Ritz approximation and an 
iterative procedure of matching theoretical against measured resonance frequencies. The 
complex modulus is determined for each resonance frequency and mode type. Binder 
shift factors are used to characterize the dynamic modulus master curve.   

 

Paper II: Characterizing the low strain complex modulus of asphalt concrete 
specimens through optimization of frequency response functions 

The force of the impact and the response of the specimen are measured to determine the 
frequency response functions (FRFs) of the specimen at different temperatures. 
Theoretical FRFs are determined through the finite element method. An optimization 
process is developed to match theoretical FRFs with the measured FRFs to extract the 
material properties. The complex modulus master curve is constructed using only seismic 
measurements. 
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3. Theory and measurement techniques of the complex 
modulus 

 

The properties of viscoelastic materials like asphalt concrete depend strongly on 
temperature and loading frequency. Each type of asphalt concrete mixture has unique 
viscoelastic properties and testing of the material must therefore be performed at 
different temperatures and loading frequencies for each mixture. A numerous types of 
analysis are often performed to asphalt concrete. However, this thesis focuses on 
methods for complex modulus testing of asphalt concrete specimens.  

 

3.1  Traditional methods to measure the complex modulus 
There are three different standard laboratory test methods available today to measure the 
complex modulus of asphalt concrete specimens. They are the AASHTO TP-62 Standard 
Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete 
Mixtures (TP 62), the Asphalt Mixture Performance Tester (AMPT) and the Indirect 
Tension (IDT) complex modulus test. The TP 62 and AMPT tests both require cylindrical 
specimens with a diameter and height of approximately 100 mm and 150 mm, 
respectively. In these tests a sinusoidal load is applied in the direction of the axis of the 
height and 2, 3 or 4 LVDTs measure the axial deformation. The load is applied at six 
different loading frequencies between 0.1 to 25 Hz using the TP 62 test protocol and at 
four different frequencies between 0.01 to 10 Hz using the AMPT test protocol. For both 
the TP 62 and the AMPT test, the magnitude of the applied load and the cross-sectional 
area of the specimen are used to determine the applied stress (σ) to the specimen. The 
applied strain (ε) is determined through the axial deformation of the specimen and the 
gauge length. The dynamic modulus of the specimen can thereafter be calculated 
according to Eqn. 1 and the phase angle according to Eqn. 2. 

 0

0

E σ
ε

∗ =  (1) 

where |E*| = dynamic modulus [Pa], 
σ0 = peak-to-peak stress amplitude [Pa], 
ε0 = peak-to-peak strain amplitude [-]. 

 2 f tφ π= ∆  (2) 

where ϕ = phase angle [rad], 
f = frequency [Hz], 
Δt = time lag between stress and strain [s]. 
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The dynamic modulus and the phase angle relate to the complex modulus according to 
Eqn. 3. 

 iE E e φ∗ ∗= ⋅  (3) 

The complex modulus can also be expressed by the storage and loss modulus according 
to Eqn. 4, where the storage modulus represent the elastic energy and the loss modulus 
represent the viscous energy. 

 * ' ''E E iE= +   (4) 

where E = storage modulus, 
 E = loss modulus, 
 i = the complex number. 

Furthermore, the phase angle can also be expressed by the loss and storage modulus 
according to Eqn. 5. 

 
''

1
'tan ( )E

E
φ −=   (5) 

Fig. 1 shows an example of equipment that can be used to measure the complex modulus 
for the TP 62 and AMPT test methods.  

 

Fig. 1 Equipment to measure the complex modulus of asphalt concrete using the TP 62 and AMPT 
standard test methods 
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Fig. 2 Test set-up for the IDT complex modulus test, measuring both vertical and horizontal 
deformations (Kim et al. 2004)  

The IDT complex modulus test was developed to be able to use more easily obtained 
specimens than what the TP 62 and AMPT tests require. The specimen dimensions used 
in the TP 62 and AMPT test protocols are most often not possible to obtain from coring 
in real pavements. The IDT complex modulus test protocol reported by Kim et al. (2004) 
applies eight loading frequencies between 0.01 to 25 Hz. The test protocol uses disc-
shaped specimens with a diameter and thickness of approximately 150 mm and 40 mm, 
respectively. As a consequence of this geometry, the sinusoidal load is applied 
perpendicular to the actual compaction direction of the specimen, whereas the TP 62 and 
AMPT tests apply the load in the same direction as the compaction. Furthermore, the 
stress state in the IDT test becomes biaxial instead of uniaxial (as it is in the other test 
methods) and the deformations needs to be measured in both the horizontal and the 
vertical direction (see Fig. 2). Therefore, the calculation of the dynamic modulus requires 
additional terms to account for the displacements in two directions and the geometry of 
the specimen. The dynamic modulus from the IDT tests is calculated according to Eqn. 6 
(Kim et al. 2004). 

 * 0 1 2 2 1

2 0 2 0

2 PE
ad V U

β γ β γ
π γ β

−
=

−
 (6) 

where P0 = applied load amplitude [N], 
 a = width of loading strip [m], 
 d = thickness of specimen [m], 
 V0 = average vertical displacement magnitude [m], 
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 U0 = average horizontal displacement magnitude [m], 
 β1, β2, γ1, γ2 = geometric coefficients [-]. 

 

3.2  Master curves 
A master curve can be constructed for materials that are thermorheologically simple 
(Brown et al. 2009). Thermorheologically simple materials can have the same behavior at 
high loading frequencies and high temperatures as they have at lower loading frequencies 
and lower temperatures. For these materials it is possible to predict the same value of the 
modulus at a different temperature and frequency, than for which it was actually 
measured. This is performed by applying the time-temperature superposition principle 
(TTSP) to the measured modulus. By applying the TTSP a measured modulus is shifted 
horizontally until its value coincides with a modulus measured at another temperature 
and frequency (see Fig. 3 and 4). The shifted modulus then becomes a function of a 
reference temperature and reduced frequency. The application of the TTSP requires that 
there is an overlap of the modulus between the different measured temperatures. An 
example of the dynamic modulus measured at different temperatures and loading 
frequencies is presented in Fig. 3.  

 

Fig. 3 The dynamic modulus measured at different loading frequencies and temperatures 

In Fig. 3 it can be seen that the modulus is measured between minimum 0.1 Hz to 
maximum 50 Hz and that there is an overlap of the measured dynamic modulus between 
the temperatures. From these measurements it is possible to construct a master curve by 
shifting for example the measured modulus at -10, 0, 20, 25 and 30 °C to a single 
continuous curve at 10 °C. Fig. 4 shows the measured dynamic modulus that has been 
shifted to a single continuous master curve over a wide reduced frequency at a reference 
temperature of 10 °C. 
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Fig. 4 The dynamic modulus master curve at a reference temperature of 10 °C 

The shift factors (α(T)), which is a measure of the temperature dependency of the 
material, are often calculated by using the Williams-Landel-Ferry equation (Eqn. 7) 
(Williams et al. 1955). 

 1

2

( )
log ( ) ref

ref

c T T
α T

c T T
− −

=
+ −

 (7) 

where c1, c2 = material constants [-], 
 T = reference temperature [°C], 
 Tref = temperature [°C]. 

The reduced frequencies (fred) are obtained by multiplying the shift factors with the 
loading frequency (f) according to Eqn. 8. 

 ( )red αf T f=  (8) 

The sigmoidal function (Eqn. 9), that is commonly applied to asphalt concrete, shows 
how the analytical dynamic modulus master curve can be calculated. 

 
( )

*

log
log

1 redβ γ f

αδE
e
 
 
 
−

= +
+

 (9) 

where δ, α, β, γ = material constants [-], 
 fred = reduced frequency [Hz]. 

The master curve and the shift factors are determined by adjusting the unknown material 
constants δ, α, β, γ, c1 and c2 until the analytical dynamic modulus (Eqn. 9) matches the 
measured dynamic modulus. The procedure of estimating unknown constants applies for 
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any relationship that is used to characterize the dynamic or complex modulus master 
curve of asphalt concrete by comparison against measured complex modulus data. 

 

3.3  Seismic measurements 
Mechanical waves are waves that propagate through a medium in which the energy of the 
waves is transferred through the connected particles. Seismic, acoustic and sound waves 
are all examples of mechanical waves. Seismic waves include two types of waves, body 
waves and surface waves. Body waves can propagate longitudinally or transversely in an 
infinite medium. The longitudinal waves which are compressional waves are the fastest 
propagating waves and are therefore called for primary waves (P-waves). The transverse 
waves which are shear waves are called secondary waves (S-waves) since they propagate 
slower and always arrive after the P-wave. Surface waves that propagate along a free 
surface of a homogenous half space are generally either of the Rayleigh or the Love type 
of waves. Waves propagating in a free homogenous plate are called Lamb waves, which 
are important for seismic field testing of pavements. 

Compression waves propagate with the speed of sound, which depend on the medium 
they travel through. The general relationship describing the speed of sound (v) 
propagating through a medium in a linear system is given by Eqn. 10, where Cij is the 
elastic component related to the direction of the wave propagation and ρ is the density.  

 ijC
v

ρ
=  (10) 

Consequently, by measuring the time and distance of a wave propagating through a solid 
with a certain density the elastic properties of the solid can be determined. This basic 
relation has been utilized to develop nondestructive ultrasonic testing techniques in many 
fields of engineering (cf. e.g. Popovics and Rose 1994; Leisure and Willis 1997). Among 
the most common techniques is the pulse velocity method, which has been used since the 
1940’s to evaluate elastic properties of rocks and concrete (Popovics and Rose 1994). In 
the test, the time of flight of a wave propagating through e. g. concrete with known 
thickness is measured. Usually a source and a receiver are positioned on each side of the 
material to excite the wave propagation and to measure the arrival time. Another 
common technique is pulse-echo methods where the source and the receiver are located 
at the same side and measures the time of the echo to return from opposite surfaces.  

Nazarian et al. (2005), Di Benedetto et al. (2009) and Norambuena-Contreras et al. 
(2010) have all applied ultrasonic measurements to asphalt concrete specimens to 
determine the modulus. However, some important disadvantages applying ultrasonic 
methods to asphalt concrete are that the modulus is determined at very high frequencies 
(> 20 kHz) and that the modulus has only been determined for one frequency at each test 
temperature. It is important to be able to determine the complex modulus of asphalt 
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concrete over a wider frequency range including low frequencies, since knowledge of the 
low frequency modulus is significant for pavement response analysis. The main 
disadvantage is although caused by the inhomogeneity of asphalt concrete. The accuracy 
of the ultrasonic testing decreases when it is applied to materials that are not truly 
homogeneous. 

Measurement of resonance frequencies is another seismic method that can be applied to 
determine elastic constants of solids. A solid or a system resonates when the frequency of 
an external force matches the natural frequency or frequencies of the object. Resonance 
frequencies of a solid depend on the stiffness, mass, dimension and the boundary 
conditions. Hence, by controlling the boundary conditions and measuring a solid’s 
resonance frequencies, mass and dimensions, the elastic constants of the solid can be 
determined. Measurements of resonance frequencies are today widely considered as one 
of the most accurate methods to determine elastic constants (Li and Gladden 2010). 
Especially, the development of resonant ultrasound spectroscopy (RUS) has proven to be 
a very accurate and efficient method to determine elastic constants (Migliori et al. 1993; 
Migliori and Sarrao 1997). RUS includes detailed measurements of resonance 
frequencies, the forward problem of calculating theoretical resonance frequencies and the 
inverse problem where the assumed elastic constants are adjusted until the theoretical 
resonance frequencies matches the measured ones. The calculation of theoretical 
frequencies is performed by minimizing the Lagrangian and by using the Rayleigh-Ritz 
approximation to expand the displacement vector in terms of basis functions in order to 
evaluate the displacements numerically (Migliori and Sarrao 1997). This calculation 
require the assumptions of stress-free boundary conditions and simple harmonic motion 
which means that it is the natural resonance frequencies without any damping that are 
being calculated. The development of RUS is relatively new compared to the wave 
propagation techniques, due to need of computers for efficient calculation of the forward 
and inverse problem. Before Holland (1967) and Demarest (1971) applied numerical 
approximation methods to calculate theoretical resonance frequencies, the analytical 
calculations were limited to specific geometries as cubes or spheres. Ohno (1976) refined 
and extended the work performed by Demarest to determine elastic constants for further 
symmetries and these papers provided a base for the development of the technique that is 
today called RUS, or resonant acoustic spectroscopy (RAS) when it is applied in a lower 
frequency range up to 20 kHz (Ostrovsky et al. 2001). Note that this development of 
RUS and RAS can be applied to arbitrary geometries by using e.g. powers of Cartesian 
coordinates as basis functions (Visscher et al. 1991). 

Comparing the two seismic methods of speed of sound and resonance frequency 
measurements, the latter method often provide important advantages in speed and 
accuracy. Wave propagation methods are usually based on the approximation of plane-
waves which are sensitive to diffraction effects that limits the accuracy of the 
measurements. For example, the more heterogeneous the material is, the more the 
propagating waves deviate from the assumption of plane-waves. This deviation gets 
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worse for the higher the frequencies are, that are applied in the test. Since there is no 
plane-wave approximation when evaluating resonance frequency measurements, and 
since lower frequencies can be applied the accuracy is higher. The plane-wave 
assumption also limits how small the specimens can be since the oscillating wavelength 
needs to be much smaller than the specimen. There is almost no limit of the size of the 
object that RUS can be applied to. Another important advantage is that using resonance 
frequency measurements it is possible to determine the complete stiffness coefficient 
matrix from one single measurement. The number of measurements needed to obtain the 
same result using wave propagation methods is at least equal to the number of stiffness 
coefficients in the matrix (Leisure and Willis 1997).  

Resonance frequency measurements of asphalt concrete specimens evaluated analytically 
using the concrete standard ASTM C215 has been reported in several papers (cf. e. g. 
Whitmoyer and Kim 1994, Kweon and Kim 2006, Lacroix et al. 2009). The fundamental 
modes of vibration are used to determine the material properties of specimens using the 
ASTM C215 standard (ASTM C215 2008). This means that it is only possible to 
determine one modulus per measurement temperature. Although these results have 
shown a promising agreement with conventional testing of the complex modulus, they 
cannot be used alone to characterize the material properties over a wide frequency range. 
It is therefore not possible to determine master curves from these results only. Through 
the use of RAS it is on the other hand possible to determine the material properties at 
several resonance frequencies and not only for the fundamental resonance frequency. 
This opens up the possibility of being able to estimate master curves using only seismic 
testing. However, at higher resonance frequencies it may be difficult to make sure that 
the correct theoretical resonance frequency are matched against the corresponding 
measured resonance frequency. This is due to that resonance frequencies of different 
modes of vibration at higher frequencies may be difficult to differentiate. This mode 
identification issue may limit the amount of usable resonance frequencies available for 
the material characterization. The application of RAS to asphalt concrete specimens is 
explained in more detail in paper I. 

In general it may difficult to determine master curves of material properties using only 
the resonance frequencies of viscoelastic objects. In the case of asphalt concrete 
specimens it may in some cases only be possible to measure three or four resonance 
frequencies to determine the complex modulus, which is usually not enough to estimate a 
master curve. For viscoelastic materials it is therefore useful to be able to characterize the 
material properties in a more closely spaced frequency interval than what resonances can 
provide. This can be accomplished by using measured frequency response functions 
(FRFs) instead of only the measured resonance frequencies (Ren et al. 2011; Renault et 
al. 2011; Rupitsch et al. 2011). A FRF is determined by normalizing the measured 
response of a specimen with the measured applied load in frequency domain. Note that 
the same testing can be performed to measure the resonance frequencies and to determine 
the FRFs. However, by accounting for the applied load it becomes possible to use the 
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whole response curve to estimate the material properties instead of the resonance peaks 
only (see Fig. 5). Figure 5 shows a measured FRF at -1.6 °C for the longitudinal modes 
of vibration of a beam-shaped asphalt concrete specimen, where the peaks are the 
resonance frequencies that are used to estimate the material properties when applying 
RAS. The FRF has been determined by the following relationship, 

 ( ) ( )( )
( ) ( )

Y f X fH f
X f X f

∗

∗

×
=

×
,  (11) 

where  H(f) = the frequency response function, 
Y(f) = the measured response, 
X(f) = the measured applied force, 
X*(f) = the complex conjugate of the applied force. 

 

Fig. 5 The measured frequency response function at -1.6 °C for the longitudinal modes of vibration 
of a beam-shaped asphalt concrete specimen.  

Through the use of FRFs, the complex modulus of asphalt concrete specimens can be 
estimated by optimizing theoretical FRFs against measured FRFs, where the assumed 
material properties are adjusted until a good match is obtained. The theoretical FRFs can 
be calculated either analytically (Quo and Brown 2001; Renault et al. 2011) or 
numerically by using e. g. the finite element method (Rupitsch et al. 2011). The method 
of optimizing FRFs to characterize the complex moduli of asphalt concrete specimens is 
more thoroughly presented in paper II. 

 

3.4  QC/QA through seismic testing 
Seismic field measurements can be used to estimate the stiffness and thickness of the 
different layers in a pavement construction (Nazarian 1993; Nazarian 1999; Ryden 
2004). This is performed by measuring the phase velocity of dispersive guided Lamb 
waves generated by applying a load impulse to the surface of the pavement structure. 
Due to the free surface and the different layers of a pavement structure, guided waves 
(surface waves) are formed when P and S-waves interact at the interfaces of the different 
layers. The propagation of guided Lamb waves is therefore dependent on the stiffness 



14 
 

and thickness of the different layers making them very useful for characterization of 
pavement structures. The guided Lamb waves are dispersive which means that the phase 
velocity of the propagating waves is frequency dependent. This relation between phase 
velocity and frequency can be described by dispersion curves. Stiffness and thickness of 
the layers in the structure are estimated by calculating theoretical dispersion curves that 
are iteratively matched against measured dispersion curves until the adjusted theoretical 
layer model provides dispersion curves that match the measured ones.  

Results from seismic field measurements of pavements can be directly linked to seismic 
laboratory measurements due to that the material is subjected to approximately the same 
loading frequency and strain level in both the field and laboratory measurements. As an 
example, a modulus measured at any temperature in the field can be directly compared to 
a master curve that has been estimated for a laboratory produced specimen through 
seismic laboratory testing. This allows for nondestructive quality control and quality 
assurance of new and old pavement constructions.  

Figure 6 illustrates the use of a master curve as a tool for quality control and quality 
assurance of pavements. In this example, a master curve has been determined through 
laboratory seismic testing and upper and lower limits of the dynamic modulus have been 
determined in the design of the pavement. By performing seismic field measurements at 
any temperature within the presented interval and at the frequency of 500 Hz, the 
resulting dynamic modulus can be compared to the laboratory determined master curve 
and to the design requirements. 

 

Fig. 6 Illustration of quality control of pavements using a seismic laboratory determined master 
curve and seismic field measurements. 
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4. Results and discussion 
 

Both RAS and optimization of FRFs to evaluate seismic measurements applied to beam-
shaped asphalt concrete specimens are presented in the appended papers. This chapter 
presents a summary of the results obtained from both of these methods. All of the results 
presented in this thesis are based on the assumption that the material is isotropic, linear 
viscoelastic and homogenous. These assumptions imply that the material has the same 
stiffness in both tension and compression (i.e. flexural and longitudinal modes of 
vibration) and that the behavior of the material can be described by a complex modulus 
and Poisson’s ratio.  

The seismic measurements providing the results presented here were performed by 
placing a beam-shaped specimen (382, 58.74, 58.94 mm) on soft foam and applying a 
load impulse exciting the longitudinal modes of vibration. An instrumented hammer was 
used to apply the load and an accelerometer was used to measure the dynamic response 
of the specimen. These measurements were performed at 11 different temperatures (-
24.4, -20.5, -15.1, -10.5, -5.4, -1.6, 5.4, 11.3, 15.8, 20.5 and 30.1 °C).  

Applying RAS can provide characterization of the elastic constants of the material, 
which provides information of the real part (storage modulus) of the complex modulus. 
In order to account for the viscoelastic properties of the material, RAS needs to be 
supplemented with a method to characterize the intrinsic damping of the material, which 
can give information of the imaginary part (loss modulus). In this approach, RAS is 
combined with the half-power bandwidth method to be able to estimate the damping and 
hence, the complex modulus of the asphalt concrete specimens. However, the half-power 
bandwidth method has been shown to be sufficiently accurate only as long as the 
damping ratio is below approximately 0.1, corresponding to a phase angle of 
approximately 11 ° (Wang et al. 2012). Note that when using FRFs the estimation of the 
damping is included in the optimization process through the direct characterization of the 
complex modulus. 

The results of the dynamic moduli of a beam-shaped asphalt concrete specimen estimated 
using RAS and FRFs are presented in figure 7. The RAS determined dynamic modulus is 
presented for the first two resonance frequencies for all measurement temperatures 
except 30.1 °C, where the damping was too high to be able to apply the half-power 
bandwidth method.  

The complex modulus determined through the optimization of FRFs has been performed 
by using two different optimization approaches. First, an optimization process has been 
performed for each measured FRF at the different temperatures giving results of the 
complex modulus at each temperature separately. Secondly, FRFs of all measurement 
temperatures have been used in one global optimization process leading to a direct 
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estimation of the complex modulus master curve. As can be seen in figure 7, the two 
optimization approaches of the FRFs provide very similar results of the dynamic moduli. 
The dynamic moduli results from RAS are also similar to the FRF results at the lower 
temperatures while a small difference can be found as the temperature increases. 

 

Fig. 7 The dynamic moduli determined by RAS – □, separate optimization of the FRFs – ○ and 
global optimization of the FRFs (master curve). 

This difference between RAS and FRFs is seen more clearly when presenting the 
estimated phase angle in figure 8, where the RAS determined phase angle has been 
estimated through the use of the half-power bandwidth method. In figure 8, the phase 
angle results of the FRF optimization (global and separate) are also similar, even though 
some differences are visible at a few temperatures. Since the complex modulus is 
estimated directly from the optimization of the FRFs, the phase angle can be determined 
without any additional methods.  
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Fig. 8 The phase angle determined by RAS – □, separate optimization of the FRFs – ○ and global 
optimization of the FRFs (master curve). 

The Cole-Cole diagram presented in figure 9 acts as an indication of the accuracy of the 
estimated master curve due to that it is independent of any shift factors and presenting 
the loss modulus against the storage modulus. Therefore, a unique curve is expected for 
the complex moduli determined for each temperature separately. If not a unique curve is 
obtained the assumption of a thermorheological simple behavior of the material may not 
be true, leading to that a master curve cannot be determined. The match between the 
complex moduli determined through the separate FRF optimization and the global FRF 
optimization is fairly good, showing that the use of FRFs is a promising approach to 
determine master curves of asphalt concrete specimens. However, the difference of the 
complex moduli results of RAS and FRFs are much more obvious in this figure. This 
difference that has been seen through all of these figures is believed to be caused by 
limited accuracy of the half-power bandwidth method. Other research has also shown 
that the accuracy of this method decreases as the damping increases (Wang 2011).  
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Fig. 9 Cole-Cole diagram of the complex moduli determined by RAS – □, separate optimization of 
the FRFs – ○ and global optimization of the FRFs (master curve). 

The results presented in this chapter and in the appended papers have not been compared 
to any results obtained from conventional standard testing of the complex modulus. This 
is partly because this comparison has been considered to be beyond the scope of this 
thesis, but also because of the different magnitude of the strain levels subjected to the 
specimens in the different tests. Results obtained from seismic testing (low strain levels) 
and conventional test methods (higher strain levels) are not expected to be same due the 
strain level dependency of asphalt concrete. Therefore, the Cole-Cole diagram has been 
used alone as an indication of the accuracy of the estimated master curve. Furthermore, 
the applied approaches (ASTM E 1876-99, RAS and FRFs) of estimating the repeatable 
seismic measurements have given very similar results of the dynamic modulus. This 
serves as a good indication of the accuracy of the results obtained through seismic 
testing. 
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5. Summary of findings 
 

Laboratory seismic measurements have proven to be able to characterize the complex 
modulus of asphalt concrete over a wide frequency range. The conventional standard 
laboratory test methods have several disadvantages as high cost, relatively low accuracy 
and time consuming test procedures. The traditional methods are also limited to testing of 
the complex modulus within a narrow frequency range. In contrast, the seismic 
measurements are fast and simple to perform, cost efficient and have a high repeatability 
and reproducibility. Some disadvantages using seismic testing are that it may not be 
possible to characterize the material properties at as low frequencies as the conventional 
testing. The measurements are also performed at a much lower strain level than what an 
actual pavement are exposed to. 

The use of FRFs gives several advantages compared to other methods for seismic 
evaluation of the complex modulus. The ultrasonic testing provides complex moduli 
above 20 kHz, the ASTM C215 standard limits the complex modulus to the fundamental 
resonance frequency and RAS suffers from the need of mode identification and that it 
must be combined with a method to estimate the intrinsic damping of the material. 
Importantly, the optimization of FRFs can characterize the complex moduli over a wider 
frequency range than the other presented methods, which opens up the possibility to 
determine master curves. A disadvantage with the proposed FRF method is that relatively 
heavy computer simulation is needed, which increases the time taken to analyze the 
seismic measurements. However, the theoretical calculation of the FRFs holds the 
potential for further development by using analytical calculations or by improving the 
current numerical calculations. 

The comparison between RAS and the FRF optimization method show that the 
optimization of FRFs gives more accurate results due to an improved estimation of the 
damping. Furthermore, the FRF method can provide a good estimation of the complex 
modulus master curve of an asphalt concrete specimen. 

Seismic measurements provide a truly nondestructive alternative to characterize material 
properties of asphalt concrete in both laboratory and field. Therefore, seismic 
measurements can be an efficient technique to improve the knowledge of the quality of 
roads by better quality controls and quality assurance of pavement structures. This can 
lead to improved production and maintenance of pavements. Finally, laboratory seismic 
testing opens up the possibility of performing highly detailed measurements of asphalt 
concrete that can give new insights and knowledge of the material. 
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Abstract In this paper, a new application of resonant

acoustic spectroscopy (RAS) is examined for con-

structing asphalt concrete mastercurves from seismic

testing. The frequency-dependent material properties

can be characterized from multiple modes of vibration

through the use of RAS. Beam-shaped asphalt spec-

imens are tested at multiple temperatures to determine

the resonance frequencies of the specimens. The

resonance frequencies are estimated by applying a

small load impulse and measuring the resulting

acceleration through the specimens. Using RAS, the

material properties of the specimens are determined

numerically using the measured resonance frequen-

cies. The results presented show that the frequency-

dependent dynamic modulus of the asphalt concrete

specimens can be characterized using several modes

of vibration at each testing temperature.

Keywords Resonant acoustic spectroscopy �
Resonance frequency � Dynamic modulus �
Mastercurve

1 Introduction

The dynamic modulus mastercurve describes the

material behavior as a function of temperature and

frequency and is therefore a key parameter in modern

pavement design and management. Traditional meth-

ods to determine the dynamic modulus mastercurve

for asphalt concrete are based on cyclic loading over a

range of frequencies (0.1–25 Hz) at different temper-

atures [1]. These tests are time consuming and require

expensive equipment and are therefore inappropriate

for control during construction. It is also important that

the testing is truly non-destructive so that the proper-

ties of the specimen do not change during the test.

Resonance frequencies depend on the geometry,

mass, boundary conditions and the material properties

of a solid and can therefore be used to calculate the

dynamic modulus. Measurements based on exciting

the resonance frequencies of elastic or viscoelastic

objects to determine the material properties are widely

known as resonant ultrasound spectroscopy (RUS).

Within the civil engineering field the method is also

known as free–free resonant column test or impact

resonance test. However, it should be noted that

traditional RUS is usually based on multiple modes of

vibration while applications in civil engineering have

so far mostly been restricted to the fundamental modes

of vibration.

Previous papers reporting the use of seismic testing

applied to asphalt concrete specimens have been based

on wave propagation techniques [6, 9], free–free
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resonant column test [16] and ultrasonic direct test

[17]. The material properties presented in these papers

have all been determined from the fundamental modes

of vibration. In RUS, unlike in the other methods, the

evaluation of the data is always based on numerical

methods to obtain the elastic properties of the material,

since a complete analytical solution of the problem

does not exist today. In fact the efficient and accurate

calculation of resonance frequencies of a solid is a

central requirement for the application of RUS [15].

Since the development of computer data processing,

the use of RUS within different applications has been

increasing and it is now a well-established method in

many fields for determination of material properties

[12, 18].

For measurements that are not only in the ultra-

sound frequency range ([20 kHz), it has been sug-

gested that the method should be called resonant

acoustic spectroscopy (RAS) [18]. Since material

properties of asphalt concrete at lower frequencies are

of key importance to pavement response analysis,

RAS is used in this paper.

Fundamental single mode testing on asphalt con-

crete has previously been investigated using ASTM

C215, which is a standard test method for concrete

specimens where the fundamental frequency of the

transverse, longitudinal and torsional modes can be

determined [2]. A wide range of asphalt mixtures have

been tested with the ASTM C215 method and a good

agreement with traditional methods has been shown

[10, 11, 22]. Limitations with the ASTM standard

include that it should only be applied to specimens

with a Length (L) to Diameter (D) ratio of L/D [ 2 and

that only the first resonant frequency from each mode

type can be used in the evaluation [2]. In order to

construct the mastercurve from measurements of the

fundamental frequency, shift factors from the binder

have been used as representative of the mixture shift

factors [11]. Previous research has shown that this

assumption is a good approximation [5, 7].

However, RAS based on variational methods, such

as the Rayleigh–Ritz algorithm allows for using

several frequencies from the same temperature in the

evaluation. The damping characteristic of the material

forces a limit for how many resonance frequencies can

be used in the evaluation. When the damping is too

high it will no longer be possible to determine the

resonances. In traditional applications of RUS and

RAS multiple modes are measured and used in the

evaluation of isotropic or anisotropic Young’s mod-

ulus (E) and Poisson’s ratio (t) to increase the

accuracy of the estimated parameters. In the case of

a viscoelastic material, multiple modes facilitate the

interpretation of the frequency dependent material

properties, which is necessary in the construction of a

mastercurve directly from RAS [14]. Another impor-

tant advantage with RAS is that it is applicable to

objects of arbitrary geometries [15].

Results from RAS applied to cylindrical disc-

shaped asphalt concrete specimens evaluated with the

Rayleigh–Ritz method have shown good correlation

with mastercurves from the Witczak dynamic modu-

lus predictive model in the high modulus range of

the mastercurve [19]. However, the measurements

reported were limited to the fundamental flexural

mode and the fundamental longitudinal mode. There-

fore, there is a need to explore the possibility of using

multiple modes of vibration to determine the material

properties of asphalt concrete.

The objective of this paper is to investigate the use

of RAS applied to beam-shaped asphalt concrete

specimens to determine the material properties of

asphalt concrete from several flexural and longitudinal

resonant modes. This method opens the possibility to

determine the high frequency (or low temperature)

part of the dynamic modulus mastercurve.

In this paper it is shown that by applying RAS to

beam shaped asphalt concrete specimens, the dynamic

modulus can be characterized for several resonance

modes at each testing temperature.

2 The dynamic modulus mastercurve

The dynamic modulus, |E*|, is the absolute value of the

complex modulus, E*, which is defined as:

E� ¼ E0 þ iE00 ¼ E�j jei/ ð1Þ

where E0 is the storage modulus, E00 is the loss modulus

and / is the phase angle between those.

In traditional dynamic modulus testing of asphalt

concrete, sinusoidal loads are applied to a specimen

while measuring its deformation:

E�j j ¼ r0

e0

; ð2Þ

where r0 is the peak-to-peak stress amplitude and e0 is

the peak-to-peak strain amplitude.
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To consider the temperature and frequency depen-

dence of asphalt concrete, this testing is performed at

several different temperatures over a limited fre-

quency range (0.1–25 Hz). Assuming a thermorhe-

ologically simple material, these measurements are

equivalent to measurements made at a specific tem-

perature over a wider range of frequencies. According

to the time–temperature superposition principle, a

temperature-dependent shift function is used to shift

the test results along the frequency axis to a single

mastercurve. The following equations are commonly

used in the determination of the mastercurve. Reduced

frequencies are calculated to shift the data along the

frequency axis,

fred ¼ aTf ð3Þ

where the shift factors, aT can be calculated with the

Williams–Landel–Ferry equation [23],

log aT ¼
�c1 T � Trefð Þ
c2 þ T � Tref

ð4Þ

The coefficients c1 and c2 are unknown constants

that are estimated along with d, a, b and c (the

unknown constants in the sigmoidal function),

log E�j j ¼ dþ a

1þ e b�c log fredð Þð Þ ð5Þ

by fitting the calculated dynamic modulus with the

measured dynamic modulus.

3 Resonant acoustic spectroscopy

The computation of the elastic parameters in RUS is

based on two parts. First, the so-called forward problem

is solved where an approximation of the elastic param-

eters is made in order to calculate the theoretical natural

frequencies. Secondly, the inverse problem is solved

where the theoretically calculated natural frequencies

are fitted to the measured natural frequencies iteratively,

by adjusting the approximated elastic parameters until

the best least-square fit is obtained.

Through history, two general approaches have been

used to determine resonance frequencies of solids non-

analytically. One of the approaches is the finite element

method, in which the solid is divided into elements

and the governing physical equations for each element

are solved separately, under the condition that there

is continuity across the element boundaries. The

theoretical development of RUS is instead based on

the approach of energy minimization techniques that

search only for the minimum energy configuration of

the body, ensuring that none of the vibrational modes

are excluded [15].

The algorithm for calculating the eigenfrequencies

of a body has been described in work by Migliori and

Sarrao [15]. Here we present only the concept of the

energy minimization techniques and how we apply it

to beam-shaped asphalt concrete specimens.

From classical mechanics it can be shown that the

free vibration of a body is exactly the same as the

solution of Lagrangian mechanics for a 3D linear

elastic body of arbitrary shape,

L ¼
Z

V

KE � PEð ÞdV ; ð6Þ

where L is the Lagrangian, KE is the kinetic energy

and PE is the potential energy of the body with the

volume V. By assuming simple harmonic motion, the

equilibrium configuration of the system can be found

and the displacements that fulfill this state correspond

perfectly to the normal modes of the system. In order

to evaluate the displacements numerically, the Ray-

leigh–Ritz method is used to expand each displace-

ment component (ui) in terms of basis functions (/k):

ui ¼
X

k

aik/k; ð7Þ

where the coefficients aik are constants and k = (p, q,

r), which are positive integers.

Different types of basis functions for the displace-

ments can be used depending on the geometry of the

sample. However, by using powers of Cartesian

coordinates a solution can be found for samples with

different types of geometry. This is also the chosen

basis function in this paper:

/k ¼ xpyqzr ð8Þ
Now substituting the displacement function into the

Lagrangian gives the following matrix equation:

L ¼ 1

2
x2a~T E

$
a~� 1

2
a~T C
$

a~ ð9Þ

where E
$

denotes the E matrix, C
$

denotes the C matrix,

a~ the eigenvectors and x2 the eigenvalues.

This matrix equation (Eq. 9) is the complete

solution of the system when N ? ?, where N is an
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arbitrarily chosen upper limit (usually N = 10) to

balance the computational time against the number of

resonance frequencies needed to determine the elastic

parameters with certain accuracy [15]. This is com-

monly done by:

pþ qþ r�N ð10Þ
The final eigenvalue equation is obtained consid-

ering that the Lagrangian is stationary for the natural

frequencies. Therefore the solutions to the problem

can be found when the derivatives qL/qaik are equal to

zero, which gives:

x2 E
$

a~¼ C
$

a~ ð11Þ
For rectangular parallelepiped samples with the

length of the sides of 2d1, 2d2 and 2d3 the calculations

of the C and E matrices can be reduced by calculating

the following analytical formulation [15],

f p; q; rð Þ ¼ 8dpþ1
1 dqþ1

2 drþ1
3

pþ 1ð Þ qþ 1ð Þ r þ 1ð Þ ð12Þ

Now solving the Lagrangian with the Rayleigh–

Ritz approximation, the displacements that give the

minimum (stationary) solution can be found (from the

eigenvectors a~) and the natural frequencies without

losses can be determined (from the eigenvalues x2).

3.1 Test procedure and analysis

The theory behind RAS requires that the specimen

have free boundary conditions. By using pads of soft

foam it is assumed that the specimen is floating with

free boundary conditions [22]. To excite the normal

modes of vibration, a small hammer is used to

manually apply a small load impulse to the specimen.

An accelerometer (PCB model 352B10) with the

weight of 1.5 g, attached to the specimen by wax, is

used to transform the resulting vibrations in the

specimen into electrical signals. The miniature accel-

erometer is assumed to have no influence on the

resonance frequencies of the beam. Figure 1 presents

the set-up used for the resonance testing.

Each 10 ms long signal is stored in a computer by

the PC-CARD DAS 16/16-AO from Measurement

Computing and by using the Fast Fourier Transform

(FFT) the signals are transformed from time domain to

frequency domain. Figure 2a shows the measured data

in time domain and Fig. 2b the transformed data in

frequency domain, where each peak is a resonance

mode. Figure 3 illustrates the displacements of the

beam for the first three flexural and longitudinal

modes.

The test procedure has been repeated for each

testing temperature (-10, 0, 10, 20, 25 and 30 �C). At

each temperature, three different excitation directions

were used to extract as many modes of vibration as

possible. For each mode type, ten load impulses were

applied to the specimen and the average resonance

frequencies from these load impulses were used in the

determination of the dynamic modulus. The coeffi-

cient of variation for the fundamental resonant

frequencies from the ten load impulses was calculated

to analyze the repeatability of the measurements. The

repeatability is presented in Fig. 4 for the fundamental

flexural mode of the different specimens. The good

repeatability is a known advantage of resonance

Fig. 1 The test set-up for resonance testing with free boundary conditions
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testing [6, 10, 11, 22]. The three different excitation

directions are illustrated in Fig. 5, along with the

direction of the beams in the compacted slab.

The measured resonance frequencies from this

procedure are the damped natural frequencies of the

specimen. These measured resonance frequencies

must therefore be converted to natural frequencies

before comparison with the theoretically calculated

natural frequencies. This is done according to:

fn ¼
fdffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p ð13Þ

where fn is the natural frequency, fd is the damped

natural frequency and f is the damping ratio. The

damping ratio is determined according to the half-

power bandwidth method,

f ¼ Df

2fd

ð14Þ

where Df is the width of the frequency response curve

at 0.707 (half-power) of the maximum amplitude of

the curve. The damping ratio is also used to determine

the phase angle, /,

/ ¼ arctanð2fÞ ð15Þ
This procedure of estimating damping is applicable

as long as the damping ratio does not exceed

approximately 0.5 (half of the critical damping) and

the recorded length of the signal is longer than the

inverse of the bandwidth (Df) [22].

To find the elastic modulus, knowledge about

Poisson’s ratio (t) is needed. At this point

Poisson’s ratio has been estimated iteratively from

the dynamic modulus with the relationship used in

the NCHRP Guide for Mechanistic-Empirical

Design [8],

t ¼ 0:15þ 0:35

1þ e aþb�log Eð Þð Þ ð16Þ

To account for the energy losses in the material that

have been excluded so far, the phase angle is used to

determine the dynamic modulus,
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E�j j ¼ E0

cos /ð Þ ð17Þ

where E0 is the storage modulus.

In the application of RUS, it has been suggested that

the number of resonance frequencies to accurately fit

the elastic parameters should be at least five times the

number of unknown parameters to be determined. This

requirement has been developed from the experience

of the RUS users through history. Due to the visco-

elasticity in asphalt concrete each frequency results in

different elastic parameters and this requirement can

therefore not be fulfilled in this application. Consid-

ering that RUS aims to determine a relative accuracy of

10-6 and the traditional standards within the pavement

industry accepts variations of 10 % this requirement

may not be necessary to successfully apply RAS to

asphalt concrete [15, 20].

4 Materials

A common mixture used in Swedish pavements, with

an accepted range of air voids between 1.5–3.5 % and

a minimum binder content of 6.0 % by weight, called

ABT 16 70/100 has been tested in this study [21].

Granite aggregates from the Bjärsgård quarry in Skåne

with the nominal aggregate size of 16 mm and binder

with penetration grade 70/100 from Nynas AB were

used in the mixture. The mixing of the asphalt concrete

was made in a laboratory mixer with an electrical

heating function and a thermometer monitoring the

mixing temperature. The mixture was compacted into

a slab with the dimensions of 500*560*80 mm (x, y,

z) in a laboratory with a roller (see Fig. 5). From the

slab, rectangular parallelepiped specimens were sawn

along all sides. The positions of the beams related to

the slab are presented in Fig. 6 and the dimensions of

the three beams are presented in Table 1. Using RAS
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Fig. 4 The repeatability of resonance testing for the funda-

mental flexural modes in z-direction

Fig. 5 Measured modes of

vibrations (a) and the

direction of the beams in the

slab (b)

Table 1 Specimen data

Beam 1 Beam 2 Beam 3

Width (y-dir.) (mm) 58.74 58.74 58.65

Height (z-dir.) (mm) 58.87 58.94 58.88

Length (x-dir.) (mm) 382.0 382.0 382.0

Mass (g) 3133 3120 3126

Density (g/cm3) 2.372 2.359 2.370

Air voids (%) 2.2 2.7 2.3

Fig. 6 The cut out beams

position in the compacted

slab
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the measured dimensions are equally important as the

measured resonance frequencies.

These dimensions were chosen according to the test

standard SS-EN 12697-26:2004, where it is stated that

the width and the height should be at least three times

the maximum grain size. The length should also be six

times the highest value of the height or the width [20].

The temperature during mixing and compaction of the

mixture was 150 �C. Table 2 presents the gradation of

the mix and the gradation limits. The binder content of

the mix was determined to 6.3 % by weight.

A temperature chamber was used for the temper-

ature conditioning of the specimens during the test.

The actual temperature of the specimens was con-

trolled using a separate ‘‘dummy’’ specimen with

thermometers attached to the center and the edge of

the specimen. The test was performed during less than

half a minute outside the temperature chamber apply-

ing 10 impacts on three different sides of the

specimen.

5 Results and discussion

In this paper RAS is compared with the test method,

ASTM E 1876-99 Standard test method for dynamic

Young’s modulus, shear modulus, and Poisson’s ratio

by impulse excitation of vibration. With ASTM E

1876-99 it is possible to determine the fundamental

resonant frequency of each type of vibrational mode

by exciting the resonance frequencies from a single

impulse. The material is assumed to be elastic,

homogeneous and isotropic [3].

The dynamic modulus has been characterized for

three resonance frequencies for each type of vibration

at the testing temperatures between -10 to 10 �C by

using RAS. At the higher temperatures (20 �C to

30 �C), increased damping has limited the number of

available resonance frequencies for successful char-

acterization of the dynamic modulus. At this point it

was not possible to evaluate the longitudinal modes at

30 �C.

Figures 7, 8 and 9 present the dynamic modulus for

each type of vibration calculated from the ASTM E

1876-99 standard and from RAS. The results are

presented as an average of the three different samples

(Beam 1 to Beam 3). The highest coefficient of

variation for the dynamic modulus between the

different specimens (over the tested temperature

interval) is 4.5- %, 5.3 % and 2.0 % for the flexural

modes in z-direction, flexural modes in y-direction and

the longitudinal modes (x-direction) respectively.

In the comparison between the two methods (RAS

and ASTM E 1876-99) a mastercurve is presented for

each method. As seen in Figs. 7, 8 and 9, the evaluated

data was not enough to create an overlap of the

dynamic modulus between the testing temperatures,

which is necessary in order to apply the time–

temperature superposition. Binder shift factors have

therefore been used to construct the mastercurve. The

binder shift factors presented in Table 3 have been

determined from frequency sweep dynamic shear

rheometer measurements.

Table 2 Gradation of the mix

Sieve size (mm) 0.063 0.125 0.25 0.5 1 2 4 5.6 8 11.2 16 22.4

Passing (%) 8.9 12 16 21 28 39 50 58 70 81 98 100

Upper limit (%) 9 – – 30 – 47 – – 73 88 100 100

Lower limit (%) 6 – – 13 – 26 – – 57 71 90 100

10
0

10
2

10
4

10
6

10
8

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Reduced frequency [Hz]

D
yn

am
ic

 m
od

ul
us

 [
M

Pa
]

Mastercurve flexural modes z-direction T
ref

 = 10oC

-10oC →

← 0oC

← 10oC

← 20oC

← 25oC

← 30oC
RAS    Mastercurve
ASTM Mastercurve
RAS
ASTM E 1876-99

Fig. 7 The average dynamic modulus mastercurve of Beams

1–3 for the flexural modes in the z-direction calculated from

both the ASTM E 1876-99 standard and RAS. The mastercurves

are constructed from binder shift factors
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It can be seen that there is a perfect match between

the two methods for the fundamental flexural modes

(Figs. 7, 8). However, the match for the fundamental

longitudinal mode is not as precise (Fig. 9). This

indicates that for the longitudinal modes of vibration

the approximate formulation in the standard test

method does not provide precise results for the

geometry investigated in this paper. It can also be

seen that the shape of the mastercurves differs between

the two methods for all mode types (Figs. 7, 8, 9). This

fact highlights the importance of characterizing the

dynamic modulus using multiple modes of vibration.

Looking more closely to the evaluated dynamic

modulus from RAS for the different beams, it can be

seen in Figs. 10, 11 and 12 that there is a systematic

difference in the dynamic modulus for the different

mode types. The most noticeable difference is between

the flexural modes of vibration and the longitudinal

modes of vibration, where the longitudinal mode type

has higher dynamic modulus especially at high

temperatures. However, there is also a small differ-

ence in the dynamic modulus between the flexural

modes in z-direction and the flexural modes in the y-

direction. Here the y-direction in general has a slightly

higher dynamic modulus than the z-direction.

These specific results of the anisotropy, where the

modulus is higher in the y-direction than in the z-

direction, have also been seen by Di Benedetto et al.

[6] for rolling wheel compacted asphalt concrete. One

reason for this could be that the aggregates tend to
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both the ASTM E 1876-99 standard and RAS. The mastercurves

are constructed from binder shift factors
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Table 3 Binder shift factors

Temperature (�C) -10 0 10 20 25 30

Log(aT) 1.5733 0.7163 0 -0.6077 -0.8782 -1.1296
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orient themselves with the longest axis horizontally

during this type of compaction, leading to a stiffer

response in the horizontal direction (y-direction).

These results agree with research showing that the

stiffness in the direction of the longest axis is

significantly higher than the stiffness in the direction

of the aggregates short axis [4]. It can also be seen that

the longitudinal horizontal direction gives a higher

modulus than both of the flexural mode types. In

previous research it has been seen that a stiffening

effect is observed when asphalt concrete is subjected

to compression [13]. These results of the anisotropy

are systematic for the tested specimens and agree well

with previous research of anisotropy in asphalt

concrete.

Figure 13 shows the result of the measured phase

angle as an average of Beam 1 to 3. Using resonance

testing, no correction are needed for obtaining the

phase angle.

The average phase angle is also presented as a

mastercurve in Fig. 14, where the mastercurve was

determined from the fitted storage and loss modulus

and by using the binder shift factors.

The influence of the air voids on the dynamic

modulus is presented in Fig. 15. The specimen with

the highest air voids (Beam 2) has the lowest dynamic

modulus at 10 kHz and 10 �C. The dynamic modulus

at this specific frequency and temperature are calcu-

lated from the RAS mastercurve.
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Table 4 presents the dynamic modulus at 10 kHz

and 10 �C for the three different mode types. It can be

seen that the results in Fig. 15 are typical for all mode

types. Also here the dynamic modulus is calculated

from the RAS mastercurve.

The coefficients in the equation of Poisson’s ratio

(Eq. 16) were chosen so that the dynamic modulus

increases with increasing mode number (frequency).

Figure 16 presents the dynamic modulus dependency

of mode number and Poisson’s ratio at -10 �C. As

shown in Fig. 16 the expected increase in the dynamic

modulus with frequency requires a Poisson’s ratio

above approximately 0.2 at this temperature. The

coefficients in Eq. 16 were set to a = -19 and

b = 2.95 based on these results.

The approximation of Poisson’s ratio is an uncer-

tainty, but to the authors knowledge there is no other

relationship that is known to be more correct in order

to describe the frequency dependency of Poisson’s

ratio. The empirical relation in Eq. 16 is here treated

as a first approximation to be further evaluated in

future studies using RAS.

6 Conclusions

The application of RAS to asphalt concrete beams has

been investigated in this paper. The results show that

the material properties can be characterized for multi-

ple modes of vibration at each testing temperature.

Therefore, the dynamic modulus can be characterized

for a wider frequency range by using RAS compared to

the traditional methods. Since the standard test methods

used today to determine the dynamic modulus are

limited to testing at maximum 25 Hz (AASHTO 2007),

RAS holds the promise of being able to provide more

knowledge about asphalt concrete at low temperatures

and higher stiffness. The results were also compared to

the ASTM E 1876-99 method. The comparison

indicated that the approximate formulation (ASTM E

1876-99) for the longitudinal modes of vibration did

not provide precise results for the geometry investi-

gated in this paper. The results throughout this paper

show a good repeatability of the method.

Importantly, RAS can be used for testing over

extended frequency ranges, thus providing increased

accuracy in future comparisons with other standard

test methods for the dynamic modulus. This knowl-

edge can be used to develop even more accurate and

precise theoretical models for asphalt concrete.
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Table 4 The dynamic modulus at 10 kHz and 10 �C

Beam 1 Beam 2 Beam 3

Air voids (%) 2.2 2.7 2.3

Flex. z-dir. (MPa) 27,539 27,057 27,156

Flex. y-dir. (MPa) 27,957 27,249 27,540

Long. x-dir. (MPa) 27,702 27,163 27,603
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Characterizing the low strain complex modulus
of asphalt concrete specimens through optimization
of frequency response functions
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Measured and finite element simulated frequency response functions are used to characterize the

low strain (�10�7) complex moduli of an asphalt concrete specimen. The frequency response

functions of the specimen are measured at different temperatures by using an instrumented hammer

to apply a load and an accelerometer to measure the dynamic response. Theoretical frequency

response functions are determined by modeling the specimen as a three-dimensional (3D) linear

isotropic viscoelastic material in a finite element program. The complex moduli are characterized

by optimizing the theoretical frequency response functions against the measured ones. The method

is shown to provide a good fit between the frequency response functions, giving an estimation of

the complex modulus between minimum 500 Hz and maximum 18|000 Hz depending on the

temperature. Furthermore, the optimization method is shown to give a good estimation of the

complex modulus master curve.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4747016]
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I. INTRODUCTION

Non-destructive testing (NDT) is of great importance

for future quality control and quality assurance of new and

old pavement constructions. NDT offers a fast, economic,

and truly non-destructive method of linking low strain meas-

urements of asphalt concrete from field and laboratory to-

gether. Using seismic testing, measurements of specimens in

the laboratory are performed at approximately the same

strain level as seismic measurements in the field. This allows

for a direct comparison between the strain level dependent

material properties determined in field and laboratory. Today

there are three different standard test methods available to

measure the dynamic modulus of asphalt concrete specimens

(Brown et al., 2009). The dynamic modulus can be measured

at minimum 0.01 Hz and maximum 25 Hz through these

methods. However, there is no non-destructive measurement

technique in the field that can be linked to the results from

these methods. In addition, the traditional methods require

expensive equipment and are not completely non-

destructive. They may also be considered as too time con-

suming to be used in the daily production.

A general problem with NDT applied to asphalt con-

crete specimens has been to evaluate the complex modulus

at several frequencies at each testing temperature. Previous

resonance frequency measurements applied to asphalt con-

crete specimens have for example been based on the ASTM

C215 standard (Whitmoyer and Kim, 1994; Kweon and

Kim, 2006; Lacroix et al., 2009) and resonant ultrasound

spectroscopy (RUS) (Ryden, 2011; Gudmarsson et al.,
2012). The ASTM C215 standard is limited to determination

of the complex modulus to the fundamental modes of vibra-

tion (ASTM, 2008), while RUS offers a possibility to deter-

mine the complex modulus at more than one resonance

frequency (Leisure and Willis, 1997; Migliori and Sarrao,

1997). However, using only the resonances of a specimen

for a viscoelastic material usually limits the determination of

the modulus to a few numbers of frequencies at a specific

temperature (Buchanan, 1987). Ryden (2011) applied reso-

nant acoustic spectroscopy (RAS) (Ostrovsky et al., 2001) to

cylindrical asphalt concrete disks, characterizing the

dynamic modulus for two different fundamental modes of

vibration at different temperatures. Gudmarsson et al. (2012)

characterized the dynamic modulus at most three resonance

frequencies per temperature by applying RAS to beam

shaped asphalt concrete specimens. In common for all these

results applying resonance testing to asphalt concrete is the

limitation of not being able to construct master curves using

only NDT. So far the construction of the master curve has

been based on binder shift factors obtained from measure-

ments of the binder in a lower frequency range (Kweon and

Kim, 2006; Lacroix et al., 2009; Gudmarsson et al., 2012).

Therefore the number of measurement points (frequency

range) from each temperature needs to be increased to be

able to determine master curves using only NDT. Also, the

applicability of the time-temperature superposition principle

to results obtained from high frequency measurements of

asphalt mixtures needs to be further investigated.

Through the use of frequency response functions

(FRFs), it is possible to characterize the material properties

at a wider range of frequencies and not only at the resonan-

ces of a specimen (Buchanan, 1987). Therefore the finite ele-

ment method is applied in this paper to perform frequency

response simulations of a beam shaped asphalt concrete

specimen to determine the theoretical frequency response.
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Using this approach, the material properties of a specimen

can be determined iteratively over a wide frequency range

by fitting theoretical FRFs with measured FRFs. Optimiza-

tion of FRFs for determination of the material properties of

specimens is commonly used in other fields of application.

For example, Guo and Brown (2000) and Renault et al.
(2011) matched measured and analytical determined FRFs

of frequency dependent materials to characterize their mate-

rial properties. Ren et al. (2011) evaluated seven parameters

describing the temperature and frequency dependent mate-

rial properties by optimizing FRFs of metal polymer sand-

wich beams. Rupitsch et al. (2011) determined the dynamic

complex Young’s modulus and Poisson’s ratio of a visco-

elastic material used for vocal fold models through the use

of FRFs. Advantages using FRFs compared to only the reso-

nance frequencies are not only the increased usable fre-

quency range. The procedure of matching the measured

resonance frequency with the corresponding theoretical reso-

nance frequency is not always straight forward. This is due

to the fact that the computation of the theoretical resonance

frequencies gives results of resonance frequencies for all

modes of vibration of the solid. Therefore the theoretical res-

onance frequencies that correspond to the measured mode of

vibration must be identified. This is generally rather simple

for the first two or three resonance frequencies but may be

more problematic for higher resonances, where the reso-

nance frequencies of different modes of vibration may be

difficult to differentiate.

The aim of this paper is to expand the frequency range

and number of measurement points, from which the complex

modulus of asphalt concrete specimens can be characterized

through NDT. Moreover, the possibility of constructing

asphalt concrete master curves through optimization of FRFs

is studied.

II. METHODOLOGY

A. Materials

Measurements have been performed to an asphalt

concrete beam and to an unplasticized polyvinyl chloride

(PVC-U) beam. The PVC-U beam (398.6 mm� 63.66 mm

� 50.08 mm) with the density of 1.374 g/cm3 has been tested

to investigate the applicability of the method.

The asphalt concrete specimen has a nominal aggregate

size of 16 mm, and the recipe of the mix follows the criteria

of an ABT 16 mixture with 70/100 Nynas bitumen and gran-

ite aggregates (Trafikverket, 2009). The mixing of the

asphalt concrete was performed in a laboratory mixer at

150 �C, giving a binder content of 6.3% and the gradation

according to Table I (Gudmarsson et al., 2012). The asphalt

mix was compacted with a roller in a laboratory to a slab

(500, 560, 80 mm), from which the specimen was sawn

out to the dimensions of 382 mm� 58.74 mm� 59.94 mm

(x, y, z) according to Fig. 1. The density of the measured

specimen is 2.359 g/cm3, and the air void content of the

specimen is 2.7%.

B. Experimental determination of the frequency
response function

The test setup used for measuring the FRFs of the beam

shaped asphalt concrete specimen is illustrated in Fig. 1. The

soft foam is assumed to provide free boundary conditions to

the specimen (Whitmoyer and Kim, 1994). The measure-

ments can be applied to specimens with arbitrary geometry.

An impact hammer (PCB model 086E80) is used to

apply a load impulse, and an accelerometer (PCB model

352B10) is used to measure the response. The accelerometer

is attached to the specimen by soft wax. Note that the accel-

erometer is very light (0.7 g) and is assumed to have no

effect on the response of the system. The impact hammer

and the accelerometer are connected to a signal conditioner

(PCB model 480B21), which is further connected to a data

acquisition device (NI USB-6251 M Series) for analog to

digital conversion. The Data Acquisition Toolbox in MATLAB

has been used to set up the data acquisition device and to

perform the measurements. The data collected from this test-

ing are stored in a computer.

The load impulse in time domain of a measurement at

�1.6 �C of the asphalt concrete specimen and the fast Fou-

rier estimation the recorded signals are presented in Figs.

2(a) and 2(b), respectively. The sampling frequency was set

to 500 kHz when using the NI USB-6251 M Series device.

Figure 3(a) shows the response of the measurement in time

domain, and Fig. 3(b) shows the fast Fourier transform of

the response in frequency domain. The record lengths of

the response were chosen depending on the temperature

(damping) of the specimen. At this temperature, 0.008 s

was chosen.

TABLE I. Gradation of the mix (Gudmarsson et al., 2012).

Sieve size (mm) 0.063 0.125 0.25 0.5 1 2 4 5.6 8 11.2 16 22.4

Passing (%) 8.9 12 16 21 28 39 50 58 70 81 98 100

Upper limit (%) 9 - - 30 - 47 - - 73 88 100 100

Lower limit (%) 6 - - 13 - 26 - - 57 71 90 100

FIG. 1. Illustration of the experimental setup.
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A frequency response function (H) can be calculated

according to Eq. (1), where Y is the Fourier transform of the

measured response (output) and X is the Fourier transform of

the load impulse (input),

Hðf Þ ¼ Yðf Þ
Xðf Þ : (1)

To reduce measurement noise when determining FRFs, the

ratio between the cross power spectrum and the power spec-

trum [Eq. (2)] is usually used in practice (Halvorsen and

Brown, 1977). This equation is also used in this paper to

determine the FRFs,

Hðf Þ ¼ X
� ðf Þ � Yðf Þ

X� ðf Þ � Xðf Þ ; (2)

where X*(f)¼ the complex conjugate of X(f).
A FRF of the longitudinal vibration modes (x direction)

has been determined for each testing temperature (�24.4 �C,

�20.5 �C, �15.1 �C, �10.5 �C, �5.4 �C, �1.6 �C, 5.4 �C,

11.3 �C, 15.8 �C, 20.5, and 30.1 �C). Figure 4(a) presents the

absolute value of the measured FRFs for five of the tested

temperatures, and Fig. 4(b) presents the unwrapped phase

angle of the same temperatures. The FRFs at different tem-

peratures are calculated from an average of five individual

measurements at each temperature. The maximum strains

applied to the specimen through these tests have been

approximated to 0.12 micro-strains. The maximum strains

occur at the first resonance frequency and have been

approximated by Eq. (3) (Pasqualini, 2006), where e is the

strain, Y(f) is the measured acceleration, L is the length of

the specimen, and f is the frequency,

e ¼ Yðf Þ
4pLf 2

: (3)

The coherence function presented in Fig. 5 is an indication

of the quality of the FRF measurements. A value of zero

means no correlation between the impulse signal and the

response. A value of one indicates that the response is com-

pletely explained by the impulse signal and that there is no

other interference. The coherence function is determined

from the average of five individual FRF measurements at

each temperature. Based on the coherence function, a mini-

mum limit of the usable frequency range to characterize the

complex modulus is set to 500 Hz for all temperatures except

-20.5 �C and �24.4 �C. At these temperatures, there is some

interference up to approximately 4000 Hz, which is set as a

minimum limit for these temperatures. The coherence func-

tion (CF) is calculated according to Eq. (4),

CF ¼

�
X� ðf Þ � Yðf Þ

����
���2�

X� ðf Þ � Xðf Þ
�
�
�

Y� ðf Þ � Yðf Þ
� ; (4)

where X� ðf Þ � Yðf Þ ¼ averaged cross power spectrum,

X� ðf Þ � Xðf Þ ¼ averaged auto power spectrum (impulse),

and Y� ðf Þ � Yðf Þ ¼ averaged auto power spectrum

(response).

C. Theoretical determination of the frequency
response function

The theoretical frequency response analysis of the speci-

men was performed by using a finite element program

(COMSOL MULTIPHYSICS 4.2, 1998), where the specimen was

FIG. 2. The load impulse in time domain (a)

and frequency domain (b).

FIG. 3. The measured response of the specimen

in time domain (a) and frequency domain (b).
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modeled as a 3D linear isotropic viscoelastic material. The

viscoelastic parameters of the material are described using

the Havriliak–Negami model according to Eq. (5) (Havriliak

and Negami, 1966) and the relationship of Poisson’s ratio

[Eq. (6)] from the National Cooperative Highway Research

Project’s Guide for Mechanistic-Empirical Design (NCHRP,

2004),

E� ¼ E1 þ
ðE0 � E1Þ
½1þ ðixsÞa�b

; (5)

where E0 is the low frequency modulus (Pa), E1 is the high

frequency modulus (Pa), a governs the frequency depend-

ency, b governs the asymmetry of the loss peak, s is the

relaxation time (s), i is the complex number, and x¼ 2pf
where f is the frequency (Hz);

� ¼ 0:15þ 0:35

1þ eðaþb�logðjE�jÞÞ ; (6)

where a and b are material constants.

The Havriliak–Negami model has been chosen instead of

the sigmoidal function, commonly applied to asphalt concrete

(Brown et al., 2009), due to the model’s ability to characterize

the complex modulus. The sigmoidal function describes only

the dynamic modulus and is therefore not able to characterize

the complete viscoelastic behavior of the material (Yusoff

et al., 2011). Furthermore, the Havriliak–Negami model can

account for an asymmetrical loss peak and has proven to be

very accurate in modeling the behavior of viscoelastic materi-

als (Hartmann et al., 1994; Madigosky et al., 2006). Another

important advantage with the Havriliak–Negami model is that

is has relatively few parameters to estimate in an optimization

process compared to other models commonly applied to

asphalt concrete (Yusoff et al., 2011).

A convergence study of the finite element model was

performed to determine a sufficient maximum element size

for good accuracy and to minimize the computational time.

Figure 6 presents the finite element simulation of different

mesh sizes for the fourth resonance frequency of the longitu-

dinal vibration mode. The fourth resonance is presented

because it is more sensitive to the mesh size than the lower

resonance frequencies. In Fig. 6, it can be seen that results

converges at a mesh size of 2 cm (2455 number of elements).

The mesh of the finite element model (shown in Fig. 7) was

built up by tetrahedral elements with quadratic shape

functions.

The frequency response simulation of the specimen was

performed by applying a unit force (1 N) in the x direction

(see Fig. 7) at the center point of the y-z plane (0, 29.37,

29.47 mm). The force was applied over a frequency range of

100–20 000 Hz in steps of 20 Hz. The response of the simula-

tion was obtained from the center point 382, 29.37,

29.47 mm. These points of the specimen correspond to the

real load impulse and where the accelerometer was attached

in the real measurements.

D. Optimization of the frequency response functions

The time-temperature superposition principle (TTSP)

allows results from measurements at different temperatures

and frequencies to be shifted to a single master curve

expressed at a specific reference temperature or reference

frequency (Brown et al., 2009). Materials to which the TTSP

can be applied are classified as thermorheological simple

materials. In the Havriliak–Negami model, it is assumed that

FIG. 4. (Color online) Measured FRFs of the lon-

gitudinal vibration modes (a) and the unwrapped

phase angle of the measured FRFs (b).

FIG. 5. (Color online) The coherence function

of the measured FRFs (a) and a zoom of the

lower frequency area (b).
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the relaxation time (s) is the only temperature dependent

parameter (Madigosky et al., 2006). This means that if the

material is thermorheologically simple, the relaxation time

is the only parameter that needs to be determined uniquely

for each tested temperature. All other parameters in the

Havriliak–Negami model should be able to be estimated to

the same value for each temperature if the TTSP is applica-

ble. Therefore theoretical FRFs are optimized against all

measured FRFs simultaneously to estimate the complex

modulus master curve through one single simulation. This is

performed by substituting the Williams–Landel–Ferry equa-

tion [Eq. (7)] into the Havriliak–Negami model [see Eq. (8)].

By this, the shift factors allow the relaxation time (s) to be

unique for each temperature while all other parameters take

the same values for all temperatures. A similar approach has

been applied by Ren et al. (2011),

logaTðTÞ ¼
�c1ðT � Tref Þ
c2 þ T � Tref

; (7)

where aT(T) is the shift factor, T is the test temperature, Tref

is the reference temperature, and c1 and c2 are material con-

stants (Williams et al., 1955),

E� ¼ E1 þ
ðE0 � E1Þ

½1þ ðixaTðTÞsÞa�b
: (8)

The FRF optimized complex modulus master curve is in this

paper also compared to complex moduli results obtained

through optimizing the FRFs separately by estimating the

four parameters E1, a, b, and s for each test temperature

[using Eq. (5)]. This comparison is performed to investigate

the accuracy of the estimated master curve against results of

the best possible matches of measured and theoretical FRFs.

MATLAB and the finite element program COMSOL MULTIPHY-

SICS 4.2 were used to perform the optimization of the FRFs.

The frequency response simulations in the finite element

program were combined with the patternsearch function in

MATLAB, allowing an update of the model parameters by min-

imizing the error between the measured and theoretical

FRFs. The patternsearch function has been found to be effi-

cient in finding the global minimum for optimization of

FRFs (Ren et al., 2011). The following objective function

[Eq. (9)] was used for the optimization of the FRFs, where

the normalized measured FRF were used to weigh frequen-

cies around the resonance peaks of the specimen higher.

Other objective functions were also tested for the optimiza-

tion process leading to similar results. The error was calcu-

lated for 60 points (frequencies) distributed over the three

first resonance frequencies of the FRFs,

Error ¼
XN

i¼1

jHMNormi
j � jHMi

j � jHTi
j

jHMi
j

����
����

� �
; (9)

where HMNorm¼ normalized measured frequency response

function, HM¼measured frequency response function,

HT¼ theoretical frequency response function, N¼ number of

data points, and i¼ index of the data point.

III. RESULTS AND DISCUSSIONS

A. Validation of the FEM optimization method

The method of optimizing FRFs was first applied to a

PVC-U beam for measurements performed at a temperature

of 21 �C. The reason for using a PVC-U specimen as valida-

tion of the method is that the material is homogenous with a

relatively small frequency dependency. The specimen was

modeled by the following simple relationship,

E� ¼ E1ð1þ giÞ (10)

FIG. 6. (Color online) Convergence study of the finite element mesh.

FIG. 7. The mesh of the finite element model.

FIG. 8. The measured and fitted theoretical FRF of the beam shaped PVC-U

specimen.
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Values of the storage modulus (E1), the loss factor (g), and

Poisson’s ratio (�), giving the best possible match between

the FRFs, were estimated in the optimization process. The

match of the theoretical FRF of the PVC-U specimen to the

measured FRF is presented in Fig. 8. The optimization of the

FRF resulted in a dynamic modulus (|E*|) of 3385.53 MPa

and a Poisson’s ratio of 0.31. This result is comparable to

statically determined elastic moduli of PVC-U material

reported in literature to be in the range of 2600 to 3300 MPa

(Motavalli et al., 1993).

B. Parameter analysis

Figure 9 presents a parameter analysis of Poisson’s ratio

where it can be seen that the FRFs at the lower half of the

frequency range are not so sensitive to the coefficients a and

b in the used Poisson’s ratio relationship [Eq. (6)]. This may

aggravate an accurate estimation of Poisson’s ratio if a wider

frequency range is not used to match the FRFs.

A parameter study of the low frequency modulus (E0)

showed that this parameter has a negligible influence of

the FRFs for reasonable values of asphalt concrete. The low

frequency modulus was therefore set to a fixed value of

100 MPa. This specific value is based on falling weight

deflectometer measurements performed by Ullidtz et al.

(2006), where the measurements resulted in a dynamic

modulus higher than 100 MPa for all tested temperatures in

field.

C. Results of the complex modulus and Poisson’s
ratio

Frequency ranges covering the three first resonance fre-

quencies have been used to estimate the complex moduli at

the different temperatures. However, the parameter study of

the influence of Poisson’s ratio to the FRFs showed that

Poisson’s ratio has a larger influence on higher resonance

frequencies (Fig. 9). Thus using the three first longitudinal

resonance frequencies was shown to not be enough to accu-

rately evaluate the coefficients a and b in Eq. (6). These

coefficients were therefore chosen to values of a¼�19 and

b¼ 2.95 (Gudmarsson et al., 2012). These values might not

provide the best possible match of the FRFs, but they give a

reasonable estimation of Poisson’s ratio. Moreover these

fixed values still contribute to a good match between theoret-

ical and measured FRFs (Fig. 10), which supports the previ-

ous approximation of the material constants a and b for this

specimen.

Figure 10 shows the match of the optimized FRFs to the

measured FRFs for four test temperatures. The figure

presents the results of the directly estimated master curve

through optimization of all FRFs simultaneously [Eq. (8)] as

well as results of the FRFs optimized for each temperature

separately [Eq. (5)]. A good match is seen especially for the

individual optimized FRFs [Eq. (5)] but also the optimiza-

tion of all FRFs simultaneously (Eq. (8)) shows a satisfying

match. These results show that the optimization method can

accurately describe the frequency dependent dynamic prop-

erties of an asphalt concrete specimen. Table II presents the

resulting parameter values of the FRF optimized master

curve using Eq. (8).

The resulting dynamic moduli (the absolute value of

the complex moduli) based on optimizing the FRFs for

each temperature separately [Eq. (5)] is presented in

Fig. 11 along with the dynamic moduli determined using

FIG. 9. (Color online) The influence of the pa-

rameters a and b in the relationship of Poisson’s

ratio [Eq. (6)] to the FRFs.

FIG. 10. (Color online) Measured and matched theoretical FRFs.

TABLE II. Estimated master curve parameters through optimization of all

FRFs simultaneously (where E0¼ 100 MPa, a¼ 19, b¼ 2.95 and Tref¼ 0 �C).

Parameter E1 a b s c1 c2

Value 37723e6 0.4239 0.3163 4.5072 14.9947 82.4206
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RAS (Gudmarsson et al., 2012). The FRFs optimized mod-

uli are estimated over a frequency range of minimum 500

Hz to maximum 18|000 Hz through the separately matched

FRFs. Table III presents values of the dynamic modulus for

some intermediate frequencies. A good agreement between

optimization of FRFs and RAS are seen at lower tempera-

tures. However, at higher temperatures, the agreement is

worse. A reason for the difference between the methods at

the higher temperatures could be due to limitations with the

half-power bandwidth method. This method has been used

to estimate the damping when applying RAS to a visco-

elastic material (Gudmarsson et al., 2012). Recent work by

Wang et al. (2012) has showed that the half-power band-

width method may overestimate the damping for multi-

DOF systems. An overestimation of the damping leads to a

higher modulus as can be seen in this case at the higher

temperatures. Furthermore, Wang (2011) showed that the

half-power bandwidth method is quite accurate for damping

ratios less than 0.1 but that the accuracy of the method

decreases with increasing damping ratios. Therefore the ac-

curacy of the RAS determined moduli may decrease when

the damping in the specimen increases with increasing tem-

peratures. At the highest test temperature (30.1 �C), it was

not possible to estimate the complex moduli using RAS due

to the high damping in the material.

Figures 12 and 13 present the master curve determined

by optimizing all FRFs at different temperatures simultane-

ously using Eq. (8) as well as the estimated moduli for each

set of temperatures using Eq. (5) plotted against the

reduced frequency. The master curve has been expressed

over a frequency range of 10�2 to 1012 Hz. The dynamic

modulus is shown in Fig. 12, and Fig. 13 shows the phase

angle, which is defined as tan�1 of the ratio between the

loss and storage modulus. A small deviation between the

two optimization approaches can be seen in the two figures.

This indicates that the asphalt concrete specimen has some

degree of deviance from a complete thermorheologically

simple behavior. However, the fit may be considered well

enough for engineering applications in pavement manage-

ment and design.

The Cole–Cole diagram (Fig. 14) emphasizes any dif-

ferences between the two optimization methods because

FIG. 11. (Color online) The results of the dynamic modulus using FRFs (�)

and RAS (�).

TABLE III. The dynamic modulus (in MPa) for different frequencies and temperatures determined through optimization of each FRF separately.

f (kHz)\T( �C) �24.4 �20.5 �15.1 �10.5 �5.4 �1.6 5.4 11.3 15.8 20.5 30.1

0.5 - - 34177 32071 30183 28254 24262 20670 17392 14387 8729

1 - - 34443 32524 30973 29218 25506 22160 19105 16129 10246

2 - - 34685 32917 31595 30010 26618 23552 20730 17855 11886

3 - - 34818 33124 31893 30404 27208 24316 21628 18841 12893

4 36687 36135 34909 33263 32080 30655 27602 24834 22237 19525 13626

6 36756 36219 35034 33446 32311 30973 28123 25530 23054 20462 14679

8 36805 36278 35120 33570 32456 31175 28468 26000 23604 21105 15436

10 36843 36324 35186 33662 32557 31321 28724 26350 24012 21590 -

12 36874 36362 35239 33736 32634 31432 28924 26628 24334 21978 -

14 36900 36394 35283 33796 32695 31521 29088 26857 24597 - -

16 36923 36421 35322 33848 - - - - - - -

18 36923 36445 - - - - - - - - -

FIG. 12. (Color online) The dynamic modulus master curve determined

through optimization of all FRFs simultaneously and the shifted dynamic

moduli determined using optimization of the FRFs for each temperature

separately.
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this diagram is independent of any shift factors [Eq. (7)].

The results of the complex modulus at different frequencies

and temperatures should all form a single curve in the

Cole–Cole diagram if the material is thermorheologically

simple (Cole and Cole, 1941; Levenberg, 2011). The Cole–

Cole diagram of the complex moduli is a further indication

of that constructing master curves using FRFs is a promis-

ing approach due to the relatively small deviation of the

separately optimized FRFs to the FRF optimized master

curve. The Cole–Cole figure also presents the results

obtained by applying RAS to the same specimen. The dif-

ference (previously shown in Fig. 11) between the FRF

optimization methods and RAS is highlighted in this figure.

These results support the theory of the half-power band-

width method being the reason for the deviation at higher

temperatures between RAS and optimization of FRFs.

IV. CONCLUSIONS

The method of optimizing FRFs is shown to be able to

give a good fit between theoretical and measured FRFs and

thereby accurately characterize the frequency dependent

dynamic properties of an asphalt concrete specimen. The

low strain complex modulus has been estimated over a fre-

quency range of minimum 500 Hz to maximum 18|000 Hz

through the separately optimized FRFs. The FRF optimized

master curve expresses the complex modulus over a wider

frequency range, approximately between 10�2 and 1012 Hz.

The separately estimated complex moduli are shown to have

a relatively small deviation from a unique curve in the Cole–

Cole space; this indicates that the method is promising in

characterizing the master curve of an asphalt concrete speci-

men. The fixed values of the material constants of Poisson’s

ratio are an approximation that may be improved, although

these values are shown to contribute to a good fit of the

FRFs. An important benefit with the proposed FRF method

is that it can be automated without any need for individual

mode identification and also extend the frequency range

used compared to the ASTM C215 standard and RAS.
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